Open Access
Cloning of the Novel Human Myeloid-Cell-Specific C/EBP-ε Transcription Factor
Author(s) -
Alexey M. Chumakov,
I Grillier,
E. A. Chumakova,
Doris Y. Chih,
Jacquelyn S. Slater,
H. Phillip Koeffler
Publication year - 1997
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.17.3.1375
Subject(s) - biology , microbiology and biotechnology , transcription factor , enhancer , gene , genetics , promoter , complementary dna , gene expression
Chicken NF-M transcription factor, in cooperation with either c-Myb or v-Myb, is active in the combinatorial activation of myeloid-cell-specific genes in heterologous cell types, such as embryonic fibroblasts. In humans, similar effects were observed with homologous members of the CCAAT/enhancer-binding protein (C/EBP) family of transcriptional regulators, especially the human homolog of chicken NF-M, C/EBP-beta (NF-IL6). However, the NF-IL6 gene is expressed in a variety of nonmyeloid cell types and is strongly inducible in response to inflammatory stimuli, making it an unlikely candidate to have an exclusive role as a combinatorial differentiation switch during myelopoiesis in human cells. By using a reverse transcription-PCR-based approach and a set of primers specific for the DNA-binding domains of highly homologous members of the C/EBP family of transcriptional regulators, we have cloned a novel human gene encoding a member of the C/EBP gene family, identified as the human homolog of CRP1, C/EBP-epsilon. A 1.2-kb cDNA encoding full-length human C/EBP-epsilon was cloned from a promyelocyte-late myeloblast-derived lambda gt11 library. Molecular analysis of the cDNA and genomic clones indicated the presence of two exons encoding a protein with an apparent molecular mass of 32 kDa and a pI of 9.5. Primer extension analysis of C/EBP-epsilon mRNA detected a single major transcription start site approximately 200 bp upstream of the start codon. The putative promoter area is similar to those of several other myeloid-cell-specific genes in that it contains no TATAAA box but has a number of purine-rich stretches with multiple sites for the factors of the Ets family of transcriptional regulators. Northern blot analyses indicated a highly restricted mRNA expression pattern, with the strongest expression occurring in promyelocyte and late-myeloblast-like cell lines. Western blot and immunoprecipitation studies using rabbit anti-C/EBP-epsilon antibodies raised against the N-terminal portion of C/EBP-epsilon (amino acids 1 to 115) showed that C/EBP-epsilon is a 32-kDa nuclear phosphoprotein. The human C/EBP-epsilon protein exhibited strong and specific binding to double-stranded DNA containing consensus C/EBP sites. Cotransfection of the C/EBP-epsilon sense and antisense expression constructs together with chloramphenicol acetyltransferase reporter vectors containing myeloid-cell-specific c-mim and human myeloperoxidase promoters suggested a role for C/EBP-epsilon transcription factor in the regulation of a subset of myeloid-cell-specific genes. Transient tranfection of a promyelocyte cell line (NB4) with a C/EBP-epsilon expression plasmid increased cell growth by sevenfold, while antisense C/EBP-epsilon caused a fivefold decrease in clonal growth of these cells.