z-logo
open-access-imgOpen Access
Retinoid-Induced Apoptosis and Sp1 Cleavage Occur Independently of Transcription and Require Caspase Activation
Author(s) -
F. Javier Piedrafita,
Magnus Pfahl
Publication year - 1997
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.17.11.6348
Subject(s) - biology , caspase , apoptosis , microbiology and biotechnology , poly adp ribose polymerase , sp1 transcription factor , fenretinide , retinoid , transcription factor , programmed cell death , retinoic acid , cell culture , biochemistry , gene expression , dna , promoter , polymerase , genetics , gene
Vitamin A and its derivatives, the retinoids, are essential regulators of many important biological functions, including cell growth and differentiation, development, homeostasis, and carcinogenesis. Natural retinoids such as all-trans retinoic acid can induce cell differentiation and inhibit growth of certain cancer cells. We recently identified a novel class of synthetic retinoids with strong anti-cancer cell activities in vitro and in vivo which can induce apoptosis in several cancer cell lines. Using an electrophoretic mobility shift assay, we analyzed the DNA binding activity of several transcription factors in T cells treated with apoptotic retinoids. We found that the DNA binding activity of the general transcription factor Sp1 is lost in retinoid-treated T cells undergoing apoptosis. A truncated Sp1 protein is detected by immunoblot analysis, and cytosolic protein extracts prepared from apoptotic cells contain a protease activity which specifically cleaves purified Sp1 in vitro. This proteolysis of Sp1 can be inhibited by N-ethylmaleimide and iodoacetamide, indicating that a cysteine protease mediates cleavage of Sp1. Furthermore, inhibition of Sp1 cleavage by ZVAD-fmk and ZDEVD-fmk suggests that caspases are directly involved in this event. In fact, caspases 2 and 3 are activated in T cells after treatment with apoptotic retinoids. The peptide inhibitors also blocked retinoid-induced apoptosis, as well as processing of caspases and proteolysis of Sp1 and poly(ADP-ribose) polymerase in intact cells. Degradation of Sp1 occurs early during apoptosis and is therefore likely to have profound effects on the basal transcription status of the cell. Interestingly, retinoid-induced apoptosis does not require de novo mRNA and protein synthesis, suggesting that a novel mechanism of retinoid signaling is involved, triggering cell death in a transcriptional activation-independent, caspase-dependent manner.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here