z-logo
open-access-imgOpen Access
A human Alu RNA-binding protein whose expression is associated with accumulation of small cytoplasmic Alu RNA.
Author(s) -
Dau-Yin Chang,
Bergen Nelson,
Timothy A. Bilyeu,
Karl Hsu,
Gretchen J. Darlington,
Richard J Maraia
Publication year - 1994
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.14.6.3949
Subject(s) - biology , alu element , signal recognition particle rna , rna , retrotransposon , complementary dna , microbiology and biotechnology , intron , rna polymerase iii , gene , rna binding protein , genetics , human genome , transposable element , rna dependent rna polymerase , genome
Human Alu sequences are short interspersed DNA elements which have been greatly amplified by retrotransposition. Although initially derived from the 7SL RNA component of signal recognition particle (SRP), the Alu sequence has evolved into a dominant transposon while retaining a specific secondary structure found in 7SL RNA. We previously characterized a set of Alu sequences which are expressed as small cytoplasmic RNAs and isolated a protein that binds to these transcripts. Here we report that biochemical purification of this protein revealed it as the human homolog of the SRP 14 polypeptide which binds the Alu-homologous region of 7SL RNA. The human cDNA predicts an alanine-rich C-terminal tail translated from a trinucleotide repeat not found in the rodent homolog, which accounts for why the human protein-RNA complex migrates more slowly than its rodent counterpart in RNA mobility shift assays. The human Alu RNA-binding protein (RBP) is expressed after transfection of this cDNA into mouse cells. Expression of human RBP in rodent x human somatic cell hybrids is associated with substantial increase in endogenous small cytoplasmic Alu and scB1 transcripts but not other small RNAs. These studies provide evidence that this RBP associates with Alu transcripts in vivo and affects their metabolism and suggests a role for Alu transcripts in translation in an SRP-like manner. Analysis of hybrid lines indicated that the Alu RBP gene maps to human chromosome 15q22, which was confirmed by Southern blotting. The possibility that the primate-specific structure of this protein may have contributed to Alu evolution is considered.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here