z-logo
open-access-imgOpen Access
A novel DNA-binding motif in the nuclear matrix attachment DNA-binding protein SATB1.
Author(s) -
Kazuya Nakagomi,
Yoshinori Kohwi,
Liliane A. Dickinson,
Terumi KohwiShigematsu
Publication year - 1994
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.14.3.1852
Subject(s) - biology , hmg box , microbiology and biotechnology , complementary dna , dna , dna binding site , dna binding domain , binding domain , peptide sequence , scaffold/matrix attachment region , b3 domain , binding site , dna binding protein , biochemistry , gene , gene expression , transcription factor , chromatin , promoter , chromatin remodeling
The nuclear matrix attachment DNA (MAR) binding protein SATB1 is a sequence context-specific binding protein that binds in the minor groove, making virtually no contact with the DNA bases. The SATB1 binding sites consist of a special AT-rich sequence context in which one strand is well-mixed A's, T's, and C's, excluding G's (ATC sequences), which is typically found in clusters within different MARs. To determine the extent of conservation of the SATB1 gene among different species, we cloned a mouse homolog of the human STAB1 cDNA from a cDNA expression library of the mouse thymus, the tissue in which this protein is predominantly expressed. This mouse cDNA encodes a 764-amino-acid protein with a 98% homology in amino acid sequence to the human SATB1 originally cloned from testis. To characterize the DNA binding domain of this novel class of protein, we used the mouse SATB1 cDNA and delineated a 150-amino-acid polypeptide as the binding domain. This region confers full DNA binding activity, recognizes the specific sequence context, and makes direct contact with DNA at the same nucleotides as the whole protein. This DNA binding domain contains a novel DNA binding motif: when no more than 21 amino acids at either the N- or C-terminal end of the binding domain are deleted, the majority of the DNA binding activity is lost. The concomitant presence of both terminal sequences is mandatory for binding. These two terminal regions consist of hydrophilic amino acids and share homologous sequences that are different from those of any known DNA binding motifs. We propose that the DNA binding region of SATB1 extends its two terminal regions toward DNA to make direct contact with DNA.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here