
Yeast cells lacking 5'-->3' exoribonuclease 1 contain mRNA species that are poly(A) deficient and partially lack the 5' cap structure.
Author(s) -
Cecilia Lee Hsu,
Audrey Stevens
Publication year - 1993
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.13.8.4826
Subject(s) - exoribonuclease , biology , messenger rna , saccharomyces cerevisiae , microbiology and biotechnology , p bodies , yeast , polyadenylation , rna , biochemistry , translation (biology) , rnase p , gene
Analysis of the slowed turnover rates of several specific mRNA species and the higher cellular levels of some of these mRNAs in Saccharomyces cerevisiae lacking 5'-->3' exoribonuclease 1 (xrn1 cells) has led to the finding that these yeast contain higher amounts of essentially full-length mRNAs that do not bind to oligo(dT)-cellulose. On the other hand, the length of mRNA poly(A) chains found after pulse-labeling of cells lacking the exoribonuclease, the cellular rate of synthesis of oligo(dT)-bound mRNA, and the initial rate of its deadenylation appeared quite similar to the same measurements in wild-type yeast cells. Examination of the 5' cap structure status of the poly(A)-deficient mRNAs by comparative analysis of the m7G content of poly(A)- and poly(A)+ RNA fractions of wild-type and xrn1 cells suggested that the xrn1 poly(A)- mRNA fraction is low in cap structure content. Further analysis of the 5' termini by measurements of the rate of 5'-->3' exoribonuclease 1 hydrolysis of specific full-length mRNA species showed that approximately 50% of the xrn1 poly(A)-deficient mRNA species lack the cap structure. Primer extension analysis of the 5' terminus of ribosomal protein 51A (RP51A) mRNA showed that about 30% of the poly(A)-deficient molecules of the xrn1 cells are slightly shorter at the 5' end. The finding of some accumulation of poly(A)-deficient mRNA species partially lacking the cap structure together with the reduction of the rate of mRNA turnover in cells lacking the enzyme suggest a possible role for 5'-->3' exoribonuclease 1 in the mRNA turnover process.