
Fusion of the erythropoietin receptor and the Friend spleen focus-forming virus gp55 glycoprotein transforms a factor-dependent hematopoietic cell line.
Author(s) -
M O Showers,
J C DeMartino,
Yasuhito Saito,
Alan D. D’Andrea
Publication year - 1993
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.13.2.739
Subject(s) - biology , erythropoietin receptor , friend virus , mutant , fusion protein , haematopoiesis , erythropoietin , microbiology and biotechnology , receptor , glycoprotein , virus , virology , signal transduction , gene , genetics , stem cell , recombinant dna
The Friend spleen focus-forming virus (SFFV) gp55 glycoprotein binds to the erythropoietin receptor (EPO-R), causing constitutive receptor signaling and the first stage of Friend erythroleukemia. We have used three independent strategies to further define this transforming molecular interaction. First, using a retroviral selection strategy, we have isolated the cDNAs encoding three fusion polypeptides containing regions of both EPO-R and gp55. These fusion proteins, like full-length gp55, transformed the Ba/F3 factor-dependent hematopoietic cell line and localized the transforming activity of gp55 to its transmembrane domain. Second, we have isolated a mutant of gp55 (F-gp55-M1) which binds, but fails to activate, EPO-R. We have compared the transforming activity of this gp55 mutant with the EPO-R-gp55 fusion proteins and with other variants of gp55, including wild-type polycythemia Friend gp55 and Rauscher gp55. All of the fusion polypeptides and mutant gp55 polypeptides were expressed at comparable levels, and all coimmunoprecipitated with wild-type EPO-R, but only the Friend gp55 and the EPO-R-gp55 fusion proteins constitutively activated wild-type EPO-R. Third, we have examined the specificity of the EPO-R-gp55 interaction by comparing the differential activation of murine and human EPO-R by gp55. Wild-type gp55 had a highly specific interaction with murine EPO-R; gp55 bound, but did not activate, human EPO-R.