z-logo
open-access-imgOpen Access
Rev and the fate of pre-mRNA in the nucleus: implications for the regulation of RNA processing in eukaryotes.
Author(s) -
Michael H. Malim,
Bryan R. Cullen
Publication year - 1993
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.13.10.6180
Subject(s) - biology , rna splicing , intron , cytoplasm , messenger rna , microbiology and biotechnology , rna , gene expression , mature messenger rna , cell nucleus , sr protein , heterogeneous ribonucleoprotein particle , precursor mrna , p bodies , transcription (linguistics) , nuclear export signal , gene , translation (biology) , genetics , linguistics , philosophy
Although a great deal is known about the regulation of gene expression in terms of transcription, relatively little is known about the modulation of pre-mRNA processing. In this study, we exploited a genetically regulated system, human immunodeficiency virus type 1 (HIV-1) and its trans-activator Rev, to examine events that occur between the synthesis of pre-mRNA in the nucleus and the translation of mRNA in the cytoplasm. Unlike the majority of eukaryotic pre-mRNAs whose introns are efficiently recognized and spliced prior to nucleocytoplasmic transport, HIV-1 mRNAs containing functional introns must be exported to the cytoplasm for the expression of many viral proteins. Using human T cells containing stably integrated proviruses, we demonstrate that such incompletely spliced viral mRNAs are exported to the cytoplasm only in the presence of the Rev trans-activator. In the absence of Rev, these intron-containing RNAs are sequestered in the T-cell nucleus and either spliced or, more commonly, degraded. Because Rev does not inhibit the expression of fully spliced viral mRNA species in T cells, we propose that Rev, rather than inhibiting viral pre-mRNA splicing, is acting here both to prevent the nuclear degradation of HIV-1 pre-mRNAs and to induce their translocation to the cytoplasm. Taken together, these findings indicate that the cellular factors responsible for the nuclear retention of unspliced pre-mRNAs, although most probably splicing factors, do not invariably commit these RNAs to productive splicing and can, instead, program such transcripts for degradation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here