z-logo
open-access-imgOpen Access
Interaction of basal positive and negative transcription elements controls repression of the proximal rat prolactin promoter in nonpituitary cells.
Author(s) -
Sara L. Jackson,
Cheryl Keech,
D.S. Williamson,
Arthur GutierrezHartmann
Publication year - 1992
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.12.6.2708
Subject(s) - biology , microbiology and biotechnology , heterologous , promoter , repressor , transcription factor , gene expression , biochemistry , gene
The proximal rat prolactin (rPRL) promoter contains three cell-specific elements, designated footprints I, III, and IV, which restrict rPRL gene expression to anterior pituitary lactotroph cells. Footprint II (-130 to -120) binds a factor, which we have termed F2F, present in pituitary and nonpituitary cell types. Here we demonstrate that a key role of the footprint II site is to inhibit rPRL promoter activity in nonpituitary cells, specifically, by interfering with the basal activating function of a vicinal element. Gene transfer analysis revealed 20-fold activation of the rPRL promoter in nonpituitary cell types when footprint II was either deleted or specifically mutated. Similar activation of the intact rPRL promoter was obtained by in vivo F2F titration studies. In GH4 rat pituitary cells, the footprint II inhibitory activity was masked by the redundant, positively acting cell-specific elements and was inhibitory only if the two upstream sites, footprints III and IV, were deleted. Deletion of the -112 to -80 region in the footprint II site-specific mutant background resulted in complete loss of rPRL promoter activity in both pituitary and nonpituitary cell types, mapping a basal activating element that is operative irrespective of cell type to this region. While the basal activating element imparted an activating function in a heterologous promoter assay, the footprint II sequence did not display any inherent repressor function and actually induced several minimal heterologous promoters. However, the inhibitory activity of the footprint II site was detected only if it was in context with the basal activating element. These data underscore the importance of ubiquitous activating and inhibitory factors in establishing cell-specific gene expression and further emphasize the complexity of the molecular mechanisms which restrict gene expression to specific cell types. We provide a novel paradigm to study rPRL promoter function and hormone responsiveness independently of lactotroph cell-specific requirements.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here