
Enhancers for RNA polymerase I in mouse ribosomal DNA.
Author(s) -
Craig S. Pikaard,
Louise Pape,
Sheryl L. Henderson,
Kenneth Ryan,
Mark H. Paalman,
Margaret A. Lopata,
Ronald H. Reeder,
Barbara SollnerWebb
Publication year - 1990
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.10.9.4816
Subject(s) - biology , enhancer , microbiology and biotechnology , spacer dna , rna polymerase i , promoter , rna polymerase ii , transcription (linguistics) , gene , ribosomal dna , xenopus , direct repeat , genetics , rna polymerase , gene expression , rna , genome , phylogenetics , linguistics , philosophy
The intergenic spacer of the mouse ribosomal genes contains repetitive 140-base-pair (bp) elements which we show are enhancers for RNA polymerase I transcription analogous to the 60/81-bp repetitive enhancers (enhancers containing a 60-bp and an 81-bp element) previously characterized from Xenopus laevis. In rodent cell transfection assays, the 140-bp repeats stimulated an adjacent mouse polymerase I promoter when located in cis and competed with it when located in trans. Remarkably, in frog oocyte injection assays, the 140-bp repeats enhanced a frog ribosomal gene promoter as strongly as did the homologous 60/81-bp repeats. Mouse 140-bp repeats also competed against frog promoters in trans. The 140-bp repeats bound UBF, a DNA-binding protein we have purified from mouse extracts that is the mouse homolog of polymerase I transcription factors previously isolated from frogs and humans. The DNA-binding properties of UBF are conserved from the mouse to the frog. The same regulatory elements (terminators, gene and spacer promoters, and enhancers) have now been identified in both a mammalian and an amphibian spacer, and they are found in the same relative order. Therefore, this arrangement of elements probably is widespread in nature and has important functional consequences.