z-logo
open-access-imgOpen Access
Enhanced translation and increased turnover of c-myc proteins occur during differentiation of murine erythroleukemia cells.
Author(s) -
G D Spotts,
Stephan Hann
Publication year - 1990
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.10.8.3952
Subject(s) - biology , protein biosynthesis , messenger rna , protein turnover , cellular differentiation , translational efficiency , microbiology and biotechnology , proto oncogene proteins c myc , translation (biology) , rna , gene expression , biochemistry , gene
To determine whether regulation of c-myc proteins occurs during the differentiation of murine erythroleukemia cells, we examined c-myc protein synthesis and accumulation throughout dimethyl sulfoxide (DMSO)- or hypoxanthine-induced differentiation. c-myc protein expression exhibited an overall biphasic reduction, with an initial concomitant decrease in c-myc RNA, protein synthesis, and protein accumulation early during the commitment phase. However, as the mRNA and protein levels recovered, c-myc protein synthesis levels dissociated from the levels of c-myc mRNA and protein accumulation. This dissociation appears to result from unusual translational and posttranslational regulation during differentiation. Translational enhancement was suggested by the observation that relatively high levels of c-myc proteins were synthesized from relatively moderate levels of c-myc RNA. This translational enhancement was not observed with c-myb. Under certain culture conditions, we also observed a change in the relative synthesis ratio of the two independently initiated c-myc proteins. Posttranslational regulation was evidenced by a dramatic postcommitment decrease in the accumulated c-myc protein levels despite relatively high levels of c-myc protein synthesis. This decrease corresponded with a twofold increase in the turnover of c-myc proteins. The consequence of this regulation was that the most substantial decrease in c-myc protein accumulation occurred during the postcommitment phase of differentiation. This result supports the hypothesis that the reduction in c-myc at relatively late times is most important for completion of murine erythroleukemia cell terminal differentiation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here