z-logo
open-access-imgOpen Access
Myeloid expression of the human c-fps/fes proto-oncogene in transgenic mice.
Author(s) -
Peter A. Greer,
V Maltby,
Janet Rossant,
Alan Bernstein,
Tony Pawson
Publication year - 1990
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.10.6.2521
Subject(s) - biology , transgene , microbiology and biotechnology , genetically modified mouse , bone marrow , myeloid , gene , haematopoiesis , tyrosine kinase , gene expression , cancer research , genetics , stem cell , signal transduction , immunology
The mammalian c-fps/fes proto-oncogene encodes a 92-kilodalton cytoplasmic protein-tyrosine kinase (p92c-fes), which is expressed in immature and differentiated hematopoietic cells of the myeloid lineage. To determine the limits of the c-fps/fes locus and to investigate the cis-acting sequences required to direct appropriate tissue-specific expression, a 13-kilobase-pair fragment of human genomic DNA containing the entire c-fps/fes coding sequence was introduced into the mouse germ line. Transcription of the human c-fps/fes transgene was highest in bone marrow and showed a tissue distribution identical to that of the endogenous mouse gene. Macrophages cultured from transgenic mouse bone marrow contained particularly high levels of human and murine c-fps/fes RNA. Furthermore, expression of human c-fps/fes RNA induced a proportionate increase in the level of the p92c-fes protein-tyrosine kinase in bone marrow, bone marrow-derived macrophages, and spleen. Elevated levels of normal human p92c-fes had no obvious effect on mouse development or hematopoiesis. Remarkably, given the short 5'- and 3'-flanking sequences, expression of the human proto-oncogene in bone marrow was independent of integration site, was proportional to the transgene copy number, and was of comparable efficiency to that of the endogenous mouse c-fps/fes gene. The 13-kilobase-pair fragment therefore defines a genetic locus sufficient for the appropriate tissue-specific expression of the fps/fes protein-tyrosine kinase and includes a dominant cis-acting element that directs integration-independent myeloid expression in transgenic mice.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here