z-logo
open-access-imgOpen Access
gcr2, a new mutation affecting glycolytic gene expression in Saccharomyces cerevisiae.
Author(s) -
Hiroshi Uemura,
D G Fraenkel
Publication year - 1990
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.10.12.6389
Subject(s) - complementation , mutant , biology , mutation , gene , microbiology and biotechnology , enzyme , saccharomyces cerevisiae , biochemistry , genetics
Screening of a mutagenized strain carrying a multicopy ENO1-'lacZ fusion plasmid revealed a new mutation affecting most glycolytic enzyme activities in a pattern resembling that caused by gcr1: levels in the range of 10% of wild-type levels on glycerol plus lactate but somewhat higher on glucose. The recessive single nuclear gene mutation, named gcr2-1, was unlinked to gcr1, and GCR1 in multiple copies did not restore enzyme levels. GCR2 was obtained by complementation from a YCp50 genomic library; the complemented strain had normal enzyme levels, as did a strain with GCR2 in multiple copies. GCR2 in multiple copies did not suppress gcr1. A chromosomal gcr2 null mutant was constructed; its pattern of enzyme activities resembled that of the gcr2-1 mutant and, like the gcr2-1 mutant, its growth defect on glucose was only partial (in contrast to the glucose negativity of the gcr1 mutant). Northern (RNA) analysis showed that gcr2 and gcr1 affect ENO1 mRNA levels.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here