z-logo
open-access-imgOpen Access
Chromosome organization of the protozoan Trypanosoma brucei.
Author(s) -
Keith Gottesdiener,
Jaime Garcı́a-Añoveros,
Mary Gwo-Shu Lee,
Lex H.T. Van der Ploeg
Publication year - 1990
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.10.11.6079
Subject(s) - biology , homologous chromosome , genetics , ploidy , chromosome , karyotype , trypanosoma brucei , genome , gene
The genome of the protozoan Trypanosoma brucei is known to be diploid. Karyotype analysis has, however, failed to identify homologous chromosomes. Having refined the technique for separating trypanosome chromosomes (L. H. T. Van der Ploeg, C. L. Smith, R. I. Polvere, and K. Gottesdiener, Nucleic Acids Res. 17:3217-3227, 1989), we can now provide evidence for the presence of homologous chromosomes. By determining the chromosomal location of different genetic markers, most of the chromosomes (14, excluding the minichromosomes), could be organized into seven chromosome pairs. In most instances, the putative homologs of a pair differed in size by about 20%. Restriction enzyme analysis of chromosome-sized DNA showed that these chromosome pairs contained large stretches of homologous DNA sequences. From these data, we infer that the chromosome pairs represent homologs. The identification of homologous chromosomes gives valuable insight into the organization of the trypanosome genome, will facilitate the genetic analysis of T. brucei, and suggests the presence of haploid gametes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here