z-logo
open-access-imgOpen Access
Promoter elements and erythroid cell nuclear factors that regulate alpha-globin gene transcription in vitro.
Author(s) -
C G Kim,
Steven Swendeman,
Kerry M. Barnhart,
M Sheffery
Publication year - 1990
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.10.11.5958
Subject(s) - biology , transcription factor , microbiology and biotechnology , promoter , transcription (linguistics) , globin , response element , gene , general transcription factor , gene expression , genetics , linguistics , philosophy
We have previously purified four factors (alpha-IRP, alpha-CP1, alpha-CP2, and NF-E1) that interact with the promoter of the alpha-globin gene. One of these (NF-E1) is a tissue-restricted factor that has recently been cloned. The binding sites of these factors identify DNA sequence elements that might mediate the tissue-specific and inducible transcription of the alpha-globin gene. This possibility was tested in a series of in vitro transcription experiments. An examination of 5' truncated templates and synthetic promoters constituted from individual factor-binding sites apposed to the alpha-TATAA box showed that the binding elements of three factors (alpha-CP1, alpha-IRP, and NF-E1) mediate four- to sixfold activation of transcription in vitro. In contrast, one element (alpha-CP2) stimulated transcription less than twofold. The 5- to 10-fold stimulation of these latter templates upon addition of a DNA sequence affinity-purified factor suggests that alpha-CP2 is functionally limiting in nuclear extracts. Additional experiments further tested the effect of supplementing extracts with factors purified from erythroid cell nuclear extracts or, in the case of NF-E1, enriched from a bacterial cDNA expression system. Each factor tested stimulated transcription in vitro in a binding-site-dependent manner. Our results provide a comprehensive functional view of the murine alpha-globin promoter and suggest possible mechanisms for activation of alpha-globin gene transcription during induced differentiation of murine erythroleukemia cells.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here