z-logo
open-access-imgOpen Access
Kinase Suppressor of Ras 1 (KSR1) Regulates PGC1α and Estrogen-Related Receptor α To Promote Oncogenic Ras-Dependent Anchorage-Independent Growth
Author(s) -
Kurt W. Fisher,
B. Das,
Robert L. Kortum,
Oleg V. Chaika,
Robert E. Lewis
Publication year - 2011
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.05255-11
Subject(s) - biology , coactivator , mapk/erk pathway , cancer research , kinase , ectopic expression , microbiology and biotechnology , signal transduction , cell growth , transcription factor , gene , genetics
Kinase suppressor of ras 1 (KSR1) is a molecular scaffold of the Raf/MEK/extracellular signal-regulated kinase (ERK) cascade that enhances oncogenic Ras signaling. Here we show KSR1-dependent, but ERK-independent, regulation of metabolic capacity is mediated through the expression of peroxisome proliferator-activated receptor gamma coactivator 1α (PGC1α) and estrogen-related receptor α (ERRα). This KSR1-regulated pathway is essential for the transformation of cells by oncogenic Ras. In mouse embryo fibroblasts (MEFs) expressing H-RasV12 , ectopic PGC1α was sufficient to rescue ERRα expression, metabolic capacity, and anchorage-independent growth in the absence of KSR1. The ability of PGC1α to promote anchorage-independent growth required interaction with ERRα, and treatment with an inhibitor of ERRα impeded anchorage-independent growth. In contrast to PGC1α, the expression of constitutively active ERRα (CA-ERRα) was sufficient to enhance metabolic capacity but not anchorage-independent growth in the absence of KSR1. These data reveal KSR1-dependent control of PGC1α- and ERRα-dependent pathways that are necessary and sufficient for signaling by oncogenic H-RasV12 to regulate metabolism and anchorage-independent growth, providing novel targets for therapeutic intervention.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here