z-logo
open-access-imgOpen Access
Nucleus-Specific and Cell Cycle-Regulated Degradation of Mitogen-Activated Protein Kinase Scaffold Protein Ste5 Contributes to the Control of Signaling Competence
Author(s) -
Lindsay S. Garrenton,
Andreas Braunwarth,
Stefan Irniger,
Ed Hurt,
Markus Künzler,
Jeremy Thorner
Publication year - 2009
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.01019-08
Subject(s) - biology , microbiology and biotechnology , scaffold protein , mapk/erk pathway , cyclin dependent kinase 1 , ubiquitin ligase , nuclear export signal , protein kinase a , kinase , cell cycle , biochemistry , ubiquitin , signal transduction , cell nucleus , cell , cytoplasm , gene
Saccharomyces cerevisiae cells are capable of responding to mating pheromone only prior to their exit from the G1 phase of the cell cycle. Ste5 scaffold protein is essential for pheromone response because it couples pheromone receptor stimulation to activation of the appropriate mitogen-activated protein kinase (MAPK) cascade. In naïve cells, Ste5 resides primarily in the nucleus. Upon pheromone treatment, Ste5 is rapidly exported from the nucleus and accumulates at the tip of the mating projection via its association with multiple plasma membrane-localized molecules. We found that concomitant with its nuclear export, the rate of Ste5 turnover is markedly reduced. Preventing nuclear export destabilized Ste5, whereas preventing nuclear entry stabilized Ste5, indicating that Ste5 degradation occurs mainly in the nucleus. This degradation is dependent on ubiquitin and the proteasome. We show that Ste5 ubiquitinylation is mediated by the SCFCdc4 ubiquitin ligase and requires phosphorylation by the G1 cyclin-dependent protein kinase (cdk1). The inability to efficiently degrade Ste5 resulted in pathway activation and cell cycle arrest in the absence of pheromone. These findings reveal that maintenance of this MAPK scaffold at an appropriately low level depends on its compartment-specific and cell cycle-dependent degradation. Overall, this mechanism provides a novel means for helping to prevent inadvertent stimulus-independent activation of a response and for restricting and maximizing the signaling competence of the cell to a specific cell cycle stage, which likely works hand in hand with the demonstrated role that G1 Cdk1-dependent phosphorylation of Ste5 has in preventing its association with the plasma membrane.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here