
Critical Role for Transcription Factor C/EBP-β in Regulating the Expression of Death-Associated Protein Kinase 1
Author(s) -
Padmaja Gade,
Sitikantha Roy,
Hui Li,
Shreeram C. Nallar,
Dhananjaya V. Kalvakolanu
Publication year - 2008
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.00784-07
Subject(s) - biology , transcription factor , gene , chromatin immunoprecipitation , ccaat enhancer binding proteins , gene expression , regulation of gene expression , microbiology and biotechnology , transcription (linguistics) , rna interference , promoter , genetics , dna binding protein , rna , linguistics , philosophy
Transcription factor C/EBP-β regulates a number of physiological responses. During an investigation of the growth-suppressive effects of interferons (IFNs), we noticed thatcebpb −/− cells fail to undergo apoptosis upon gamma IFN (IFN-γ) treatment, compared to wild-type controls. To examine the basis for this response, we have performed gene expression profiling of isogenic wild-type andcebpb −/− bone marrow macrophages and identified a number of IFN-γ-regulated genes that are dependent on C/EBP-β for their expression. These genes are distinct from those regulated by the JAK-STAT pathways. Genes identified in this screen appear to participate in various cellular pathways. Thus, we identify a new pathway through which the IFNs exert their effects on cellular genes through C/EBP-β. One of these genes is death-associated protein kinase 1 (dapk1 ). DAPK1 is critical for regulating the cell cycle, apoptosis, and metastasis. Using site-directed mutagenesis, RNA interference, and chromatin immunoprecipitation assays, we show that C/EBP-β binds to the promoter ofdapk1 and is required for the regulation ofdapk1 . Both mousedapk1 and humandapk1 exhibited similar dependences on C/EBP-β for their expression. The expression of the other members of the DAPK family occurred independently of C/EBP-β. Members of the C/EBP family of transcription factors other than C/EBP-β did not significantly affectdapk1 expression. We identified two elements in this promoter that respond to C/EBP-β. One of these is a consensus C/EBP-β-binding site that constitutively binds to C/EBP-β. The other element exhibits homology to the cyclic AMP response element/activating transcription factor binding sites. C/EBP-β binds to this site in an IFN-γ-dependent manner. Inhibition of ERK1/2 or mutation of an ERK1/2 site in the C/EBP-β protein suppressed the IFN-γ-induced response of this promoter. Together, our data show a critical role for C/EBP-β in a novel IFN-induced cell growth-suppressive pathway via DAPK1.