z-logo
open-access-imgOpen Access
Binding of SH2-B Family Members within a Potential Negative Regulatory Region Maintains JAK2 in an Active State
Author(s) -
Jason H. Kurzer,
Pipsa Saharinen,
Olli Silvennoinen,
Christin CarterSu
Publication year - 2006
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.00570-06
Subject(s) - sh2 domain , biology , janus kinase 2 , phosphotyrosine binding domain , tyrosine kinase , tyrosine , janus kinase , signal transducing adaptor protein , biochemistry , binding site , plasma protein binding , proto oncogene tyrosine protein kinase src , microbiology and biotechnology , signal transduction
The tyrosine kinase Janus kinase 2 (JAK2) transduces signaling for the majority of known cytokine receptor family members and is constitutively activated in some cancers. Here we examine the mechanisms by which the adapter proteins SH2-Bβ and APS regulate the activity of JAK2. We show that like SH2-Bβ, APS binds JAK2 at multiple sites and that binding to phosphotyrosine 813 is essential for APS to increase active JAK2 and to be phosphorylated by JAK2. Binding of APS to a phosphotyrosine 813-independent site inhibits JAK2. Both APS and SH2-Bβ increase JAK2 activity independent of their N-terminal dimerization domains. SH2-Bβ-induced increases in JAK2 dimerization require only the SH2 domain and only one SH2-Bβ to be bound to a JAK2 dimer. JAK2 mutations and truncations revealed that amino acids 809 to 811 in JAK2 are a critical component of a larger regulatory region within JAK2, most likely including amino acids within the JAK homology 1 (JH1) and JH2 domains and possibly the FERM domain. Together, our data suggest that SH2-Bβ and APS do not activate JAK2 as a consequence of their own dimerization, recruitment of an activator of JAK2, or direct competition with a JAK2 inhibitor for binding to JAK2. Rather, they most likely induce or stabilize an active conformation of JAK2.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here