
Cap-Independent Translation Mechanism of Red Clover Necrotic Mosaic Virus RNA2 Differs from That of RNA1 and Is Linked to RNA Replication
Author(s) -
Hiroyuki Mizumoto,
Hiro-oki Iwakawa,
Masanori Kaido,
Kazuyuki Mise,
Tetsuro Okuno
Publication year - 2006
Publication title -
journal of virology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.617
H-Index - 292
eISSN - 1070-6321
pISSN - 0022-538X
DOI - 10.1128/jvi.80.8.3781-3791.2006
Subject(s) - biology , rna , untranslated region , translation (biology) , open reading frame , virology , messenger rna , genetics , microbiology and biotechnology , gene , peptide sequence
The genome ofRed clover necrotic mosaic virus (RCNMV) in the genusDianthovirus is divided into two RNA molecules of RNA1 and RNA2, which have no cap structure at the 5′ end and no poly(A) tail at the 3′ end. The 3′ untranslated region (3′ UTR) of RCNMV RNA1 contains an essential RNA element (3′TE-DR1), which is required for cap-independent translation. In this study, we investigated a cap-independent translational mechanism of RNA2 using a firefly luciferase (Luc) gene expression assay system in cowpea protoplasts and a cell-free lysate (BYL) prepared from evacuolated tobacco BY2 protoplasts. We were unable to detectcis -acting RNA sequences in RNA2 that can replace the function of a cap structure, such as the 3′TE-DR1 of RNA1. However, the uncapped reporter RNA2, RNA2-Luc, in which the Luc open reading frame (ORF) was inserted between the 5′ UTR and the movement protein ORF, was effectively translated in the presence of p27 and p88 in protoplasts in which RNA2-Luc was replicated. Time course experiments in protoplasts showed that the translational activity of RNA2-Luc did not reflect the amount of RNA2. Mutations incis -acting RNA replication elements of RNA2 abolished the cap-independent translational activity of RNA2-Luc, suggesting that the translational activity of RNA2-Luc is coupled to RNA replication. Our results show that the translational mechanism differs between two segmented genomic RNAs of RCNMV. We present a model in which only RNA2 that is generated de novo through the viral RNA replication machinery functions as mRNA for translation.