z-logo
open-access-imgOpen Access
Detection of Cell-Cell Fusion Mediated by Ebola Virus Glycoproteins
Author(s) -
Séverine Bär,
Ayato Takada,
Yoshihiro Kawaoka,
Marc Alizon
Publication year - 2006
Publication title -
journal of virology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.617
H-Index - 292
eISSN - 1070-6321
pISSN - 0022-538X
DOI - 10.1128/jvi.80.6.2815-2822.2006
Subject(s) - endosome , biology , syncytium , ebola virus , cell fusion , lipid bilayer fusion , viral entry , endocytosis , virology , viral envelope , glycoprotein , microbiology and biotechnology , virus , cell , viral replication , biochemistry , intracellular
Ebola viruses (EboV) are enveloped RNA viruses infecting cells by a pH-dependent process mediated by viral glycoproteins (GP) involving endocytosis of virions and their routing into acidic endosomes. As with well-characterized pH-dependent viral entry proteins, in particular influenza virus hemagglutinin, it is thought that EboV GP require activation by low pH in order to mediate fusion of the viral envelope with the membrane of endosomes. However, it has not yet been possible to confirm the direct role of EboV GP in membrane fusion and the requirement for low-pH activation. It was in particular not possible to induce formation of syncytia by exposing cells expressing EboV GP to acidic medium. Here, we have used an assay based on the induction of a β-galactosidase (lacZ ) reporter gene in target cells to detect cytoplasmic exchanges, indicating membrane fusion, with cells expressing EboV GP (Zaire species). Acidic activation of GP-expressing cells was required for efficient fusion with target cells. The direct role of EboV GP in this process is indicated by its inhibition by anti-GP antibodies and by the lack of activity of mutant GP normally expressed at the cell surface but defective for virus entry. Fusion was not observed when target cells underwent acidic treatment, for example, when they were placed in coculture with GP-expressing cells before the activation step. This unexpected feature, possibly related to the nature of the EboV receptor, could explain the impossibility of inducing formation of syncytia among GP-expressing cells.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here