
Human Tripartite Motif 5α Domains Responsible for Retrovirus Restriction Activity and Specificity
Author(s) -
David Pérez-Caballero,
Théodora Hatziioannou,
Annie Yang,
Simone Cowan,
Paul D. Bieniasz
Publication year - 2005
Publication title -
journal of virology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.617
H-Index - 292
eISSN - 1070-6321
pISSN - 0022-538X
DOI - 10.1128/jvi.79.14.8969-8978.2005
Subject(s) - biology , retrovirus , murine leukemia virus , virology , long terminal repeat , cytoplasm , virus , viral replication , microbiology and biotechnology , genetics , gene , genome
The tripartite motif 5alpha protein (TRIM5alpha) is one of several factors expressed by mammalian cells that inhibit retrovirus replication. Human TRIM5alpha (huTRIM5alpha) inhibits infection by N-tropic murine leukemia virus (N-MLV) but is inactive against human immunodeficiency virus type 1 (HIV-1). However, we show that replacement of a small segment in the carboxy-terminal B30.2/SPRY domain of huTRIM5alpha with its rhesus macaque counterpart (rhTRIM5alpha) endows it with the ability to potently inhibit HIV-1 infection. The B30.2/SPRY domain and an additional domain in huTRIM5alpha, comprising the amino-terminal RING and B-box components of the TRIM motif, are required for N-MLV restriction activity, while the intervening coiled-coil domain is necessary and sufficient for huTRIM5alpha multimerization. Truncated huTRIM5alpha proteins that lack either or both the N-terminal RING/B-Box or the C-terminal B30.2/SPRY domain form heteromultimers with full-length huTRIM5alpha and are dominant inhibitors of its N-MLV restricting activity, suggesting that homomultimerization of intact huTRIM5alpha monomers is necessary for N-MLV restriction. However, localization in large cytoplasmic bodies is not required for inhibition of N-MLV by huTRIM5alpha or for inhibition of HIV-1 by chimeric or rhTRIM5alpha.