
Epstein-Barr Virus-Encoded BILF1 Is a Constitutively Active G Protein-Coupled Receptor
Author(s) -
Sarah Juel Paulsen,
Mette M. Rosenkilde,
Jesper EugenOlsen,
Thomas N. Kledal
Publication year - 2005
Publication title -
journal of virology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.617
H-Index - 292
eISSN - 1070-6321
pISSN - 0022-538X
DOI - 10.1128/jvi.79.1.536-546.2005
Subject(s) - biology , g protein coupled receptor , microbiology and biotechnology , lytic cycle , furin , virology , virus , signal transduction , biochemistry , enzyme
Both beta- and gammaherpesviruses encode G protein-coupled receptors (GPCRs) with unique pharmacological phenotypes and important biological functions. An example is ORF74, the gamma2-herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded GPCR, which is highly constitutively active and considered the key oncogene in Kaposi's sarcoma pathogenesis. In contrast, the current annotation of the Epstein-Barr virus (EBV) genome does not reveal any GPCR homolog encoded by this human oncogenic gamma1-herpesvirus. However, by employing bioinformatics, we recognized that the previously established EBV open reading frame BILF1 indeed encodes a GPCR. Additionally, BILF1 is a member of a new family of related GPCRs exclusively encoded by gamma1-herpesviruses. Expression of hemagglutinin-tagged BILF1 in the HEK293 epithelial cell line revealed that BILF1 is expressed as an approximately 50-kDa glycosylated protein. Immunocytochemistry and confocal microscopy revealed that BILF1 localizes predominantly to the plasma membrane, similar to the localization of KSHV ORF74. Using chimeric G proteins, we found that human and rhesus EBV-encoded BILF1 are highly potent constitutively active receptors, activating Galphai. Furthermore, BILF1 is able to inhibit forskolin-triggered CREB activation via stimulation of endogenous G proteins in a pertussis toxin-sensitive manner, verifying that BILF1 signals constitutively through Galphai. We suggest that EBV may use BILF1 to regulate Galphai-activated pathways during viral lytic replication, thereby affecting disease progression.