
p21Waf1/Cip1/Sdi1Prevents Apoptosis as Well as Stimulates Growth in Cells Transformed or Immortalized by Human T-Cell Leukemia Virus Type 1-Encoded Tax
Author(s) -
Sanae Kawata,
Yasuo Ariumi,
Kunitada Shimotohno
Publication year - 2003
Publication title -
journal of virology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.617
H-Index - 292
eISSN - 1070-6321
pISSN - 0022-538X
DOI - 10.1128/jvi.77.13.7291-7299.2003
Subject(s) - biology , immortalised cell line , cell culture , ectopic expression , microbiology and biotechnology , cell growth , creb , apoptosis , transfection , human t lymphotropic virus 1 , cancer research , virus , t cell leukemia , gene , virology , transcription factor , genetics
Human T-cell leukemia virus type 1 (HTLV-1) Tax regulates the expression of virally encoded genes, as well as various endogenous host genes in trans. Tax-mediated regulation of gene expression is important for the immortalization of normal human T lymphocytes and the transformation of fibroblast cells, such as Rat-1 cells. Tax has the ability to transactivate p21(Waf1/Cip1/Sdi1), resulting in high expression levels in HTLV-1-immortalized cells. Since p21 expression is suppressed due to methylation of the promoter region in Rat-l cell line, p21 may not be critical for the transformation of this cell line by Tax. To further understand the role of p21 for the proliferation of Tax-transformed Rat-1 cells, we examined the effect of ectopic expression of p21 in these cells. Here, we observed that p21 expression enhanced the transformation of this cell line via at least two mechanisms: (i) the enhancement of NF-kappaB activation and/or CREB signaling and (ii) the excitation of antiapoptotic machinery. To analyze the role of p21 that is overexpressed in HTLV-1-immortalized lymphocytes, p21 expression was suppressed by using an antisense oligonucleotide specific for p21 mRNA; these cells then became sensitive to apoptotic induction. These results suggest that p21 plays an important role in the proliferation of Tax-expressing cells through the regulation of at least two independent mechanisms.