
Two Major Histocompatibility Complex Class I-Restricted Epitopes of the Borna Disease Virus p10 Protein Identified by Cytotoxic T Lymphocytes Induced by DNA-Based Immunization
Author(s) -
Yuichi Hashimoto,
Horng-Shen Chen,
Cynthia Cunningham,
Tahir Malik,
Patrick K. Lai
Publication year - 2003
Publication title -
journal of virology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.617
H-Index - 292
eISSN - 1070-6321
pISSN - 0022-538X
DOI - 10.1128/jvi.77.10.6076-6081.2003
Subject(s) - ctl* , virology , biology , cytotoxic t cell , epitope , priming (agriculture) , complementary dna , major histocompatibility complex , antigen , cd8 , immunization , microbiology and biotechnology , immunology , in vitro , gene , genetics , germination , botany
Borna disease virus (BDV) infection of Lewis rats is the most studied animal model of Borna disease, an often fatal encephalomyelitis. In this experimental model, BDV-specific CD8(+) cytotoxic T lymphocytes (CTLs) play a prominent role in the immunopathogenesis of infection by the noncytolytic, persistent BDV. Of the six open reading frames of BDV, CTLs to BDV X (p10) and the L-polymerase have never been studied. In this study, we used plasmid immunization to investigate the CTL response to BDV X and N. Plasmid-based immunization was a potent CTL inducer in Lewis rats. Anti-X CTLs were primed by a single injection of the p10 cDNA. Two codominant p10 epitopes, M(1)SSDLRLTLL(10) and T(8)LLELVRRL(16), associated with the RT1.A(l) major histocompatibility complex class I molecules of the Lewis rats, were identified. In addition, immunization with a BDV p40-expressing plasmid confirmed the previously reported RT1.A(l)-restricted A(230)SYAQMTTY(238) peptide as the CTL target for BDV N. In contrast to the CTL responses, plasmid vaccination was a poor inducer of an antibody response to p10. Three injections of a recombinant eukaryotic expression plasmid of BDV p10 were needed to generate a weak anti-p10 immunoglobulin M response. However, the antibody response could be optimized by a protein boost after priming with cDNA.