z-logo
open-access-imgOpen Access
Identification and Expression of Human Cytomegalovirus Transcription Units Coding for Two Distinct Fcγ Receptor Homologs
Author(s) -
Ramazan Atalay,
Albert Zimmermann,
Markus Wagner,
Eva Maria Borst,
Christine Benz,
Martin Messerle,
Hartmut Hengel
Publication year - 2002
Publication title -
journal of virology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.617
H-Index - 292
eISSN - 1070-6321
pISSN - 0022-538X
DOI - 10.1128/jvi.76.17.8596-8608.2002
Subject(s) - biology , human cytomegalovirus , gene , glycoprotein , receptor , antibody , immunoglobulin domain , immune system , genetics , microbiology and biotechnology , virology
Cellular receptors for the Fc domain of immunoglobulin G (IgG) (FcgammaRs) comprise a family of surface receptors on immune cells connecting humoral and cellular immune responses. Several herpesviruses induce FcgammaR activities in infected cells. Here we identify two distinct human cytomegalovirus (HCMV)-encoded vFcgammaR glycoproteins of 34 and 68 kDa. A panel of HCMV strains exhibited a slight molecular microheterogeneity between Fcgamma-binding proteins, suggesting their viral origin. To locate the responsible genes within the HCMV genome, a large set of targeted HCMV deletion mutants was constructed. The mutant analysis allowed the identification of a spliced UL119-UL118 mRNA to encode vFcgammaR gp68 and TRL11/IRL11 to encode vFcgammaR gp34. Both vFcgammaRs are surface resident type I transmembrane glycoproteins. Significant relatedness of sequences in the extracellular chain of gpUL119-118 and gpTRL11 with particular immunoglobulin supergene family domains present in FcgammaR I and FcgammaRs II/III, respectively, indicates a different ancestry and function of gpUL119-118 and gpTRL11. The HCMV-encoded vFcgammaRs highlight an impressive diversification and redundancy of FcgammaR structures.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here