
Reassortment In Vivo: Driving Force for Diversity of Human Rotavirus Strains Isolated in the United Kingdom between 1995 and 1999
Author(s) -
Miren IturrizaGómara,
Beverley Isherwood,
Ulrich Desselberger,
Jim Gray
Publication year - 2001
Publication title -
journal of virology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.617
H-Index - 292
eISSN - 1070-6321
pISSN - 0022-538X
DOI - 10.1128/jvi.75.8.3696-3705.2001
Subject(s) - reassortment , biology , rotavirus , reoviridae , genetics , genotype , genetic diversity , diversity (politics) , virology , virus , gene , population , medicine , disease , pathology , covid-19 , sociology , anthropology , infectious disease (medical specialty) , demography
The G and P genotypes of 3,601 rotavirus strains collected in the United Kingdom between 1995 and 1999 were determined (M. Iturriza-Gómara et al., J. Clin. Microbiol. 38:4394-4401, 2000). In 95.4% of the strains the most common G and P combinations, G1P[8], G2P[4], G3P[8], and G4P[8], were found. A small but significant number (2%) of isolates from the remaining strains were reassortants of the most common cocirculating strains, e.g., G1P[4] and G2P[8]. Rotavirus G9P[6] and G9P[8] strains, which constituted 2.7% of all viruses, were genetically closely related in their G components, but the P components of the G9P[8] strains were very closely related to those of cocirculating strains of the more common G types (G1, G3, and G4). In conclusion, genetic interaction by reassortment among cocirculating rotaviruses is not a rare event and contributes significantly to their overall diversity.