
Deletion of β-Strand and α-Helix Secondary Structure in Normal Prion Protein Inhibits Formation of Its Protease-Resistant Isoform
Author(s) -
Ina Vorberg,
Kaman Chan,
Suzette A. Priola
Publication year - 2001
Publication title -
journal of virology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.617
H-Index - 292
eISSN - 1070-6321
pISSN - 0022-538X
DOI - 10.1128/jvi.75.21.10024-10032.2001
Subject(s) - scrapie , biology , gene isoform , mutant , proteinase k , microbiology and biotechnology , protease , conformational change , biochemistry , dna , prion protein , gene , enzyme , medicine , disease , pathology
A fundamental event in the pathogenesis of transmissible spongiform encephalopathies (TSE) is the conversion of a normal, proteinase K-sensitive, host-encoded protein, PrP-sen, into its protease-resistant isoform, PrP-res. During the formation of PrP-res, PrP-sen undergoes conformational changes that involve an increase of beta-sheet secondary structure. While previous studies in which PrP-sen deletion mutants were expressed in transgenic mice or scrapie-infected cell cultures have identified regions in PrP-sen that are important in the formation of PrP-res, the exact role of PrP-sen secondary structures in the conformational transition of PrP-sen to PrP-res has not yet been defined. We constructed PrP-sen mutants with deletions of the first beta-strand, the second beta-strand, or the first alpha-helix and tested whether these mutants could be converted to PrP-res in both scrapie-infected neuroblastoma cells (Sc(+)-MNB cells) and a cell-free conversion assay. Removal of the second beta-strand or the first alpha-helix significantly altered both processing and the cellular localization of PrP-sen, while deletion of the first beta-strand had no effect on these events. However, all of the mutants significantly inhibited the formation of PrP-res in Sc(+)-MNB cells and had a greatly reduced ability to form protease-resistant PrP in a cell-free assay system. Thus, our results demonstrate that deletion of the beta-strands and the first alpha-helix of PrP-sen can fundamentally affect PrP-res formation and/or PrP-sen processing.