z-logo
open-access-imgOpen Access
Isolation of Herpes Simplex Virus Procapsids from Cells Infected with a Protease-Deficient Mutant Virus
Author(s) -
William W. Newcomb,
Benes L. Trus,
Naiqian Cheng,
Alasdair C. Steven,
Amy K. Sheaffer,
Daniel J. Tenney,
Sandra K. Weller,
Jay C. Brown
Publication year - 2000
Publication title -
journal of virology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.617
H-Index - 292
eISSN - 1070-6321
pISSN - 0022-538X
DOI - 10.1128/jvi.74.4.1663-1673.2000
Subject(s) - capsid , biology , herpes simplex virus , mutant , biophysics , in vitro , microbiology and biotechnology , virus , virology , biochemistry , gene
Herpes simplex virus type 1 (HSV-1) capsid proteins assemble in vitro into spherical procapsids that differ markedly in structure and stability from mature polyhedral capsids but can be converted to the mature form. Circumstantial evidence suggests that assembly in vivo follows a similar pathway of procapsid assembly and maturation, a pathway that resembles those of double-stranded DNA bacteriophages. We have confirmed the above pathway by isolating procapsids from HSV-1-infected cells and characterizing their morphology, thermal sensitivity, and protein composition. Experiments were carried out with an HSV-1 mutant (m 100) deficient in the maturational protease for which it was expected that procapsids—normally, short-lived intermediates—would accumulate in infected cells. Particles isolated fromm 100-infected cells were found to share the defining properties of procapsids assembled in vitro. For example, by electron microscopy, they were found to be spherical rather than polyhedral in shape, and they disassembled at 0°C, unlike mature capsids, which are stable at this temperature. A three-dimensional reconstruction computed at 18-Å resolution from cryoelectron micrographs showedm 100 procapsids to be structurally indistinguishable from procapsids assembled in vitro. In both cases, their predominant components are the four essential capsid proteins: the major capsid protein (VP5), the scaffolding protein (pre-VP22a), and the triplex proteins (VP19C and VP23). VP26, a small, abundant but dispensable capsid protein, was not found associated withm 100 procapsids, suggesting that it binds to capsids only after they have matured into the polyhedral form. Procapsids were also isolated from cells infected at the nonpermissive temperature with the HSV-1 mutantts Prot.A (a mutant with a thermoreversible lesion in the protease), and their identity as procapsids was confirmed by cryoelectron microscopy. This analysis revealed density on the inner surface of the procapsid scaffolding core that may correspond to the location of the maturational protease. Upon incubation at the permissive temperature,ts Prot.A procapsids transformed into polyhedral, mature capsids, providing further confirmation of their status as precursors.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom