
Differential Inhibition of Long Interspersed Element 1 by APOBEC3 Does Not Correlate with High-Molecular-Mass-Complex Formation or P-Body Association
Author(s) -
Anna Maria Niewiadomska,
Chunjuan Tian,
Lindi Tan,
Tao Wang,
Phuong Thi Nguyen Sarkis,
Xiao Fang Yu
Publication year - 2007
Publication title -
journal of virology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.617
H-Index - 292
eISSN - 1070-6321
pISSN - 0022-538X
DOI - 10.1128/jvi.02800-06
Subject(s) - biology , cytidine deaminase , rna , cytidine , apobec3g , ribonucleoprotein , apobec , microbiology and biotechnology , biochemistry , dna , gene , enzyme , genome
The human cytidine deaminase APOBEC3G (A3G) and other APOBEC3 proteins exhibit differential inhibitory activities against diverse endogenous retroelements and retroviruses, including Vif-deficient human immunodeficiency virus type 1. The potential inhibitory activity of human APOBEC proteins against long interspersed element 1 (LINE-1) has not been fully evaluated. Here, we demonstrate inhibition of LINE-1 by multiple human APOBEC3 cytidine deaminases, including previously unreported activity for A3DE and A3G. More ancient members of APOBEC, cytidine deaminases AID and APOBEC2, had no detectable activity against LINE-1. A3A, which did not form high-molecular-mass (HMM) complexes and interacted poorly with P bodies, was the most potent inhibitor of LINE-1. A3A specifically recognizes LINE-1 RNA but not the other cellular RNAs tested. However, in the presence of LINE-1, A3A became associated with HMM complexes containing LINE-1 RNA. The ability of A3A to recognize LINE-1 RNA required its catalytic domain and was important for its LINE-1 suppression. Although the mechanism of LINE-1 restriction did not seem to involve DNA editing, A3A inhibited the accumulation of nascent LINE-1 DNA, suggesting interference with LINE-1 reverse transcription and/or integration or intracellular movement of LINE-1 ribonucleoprotein. Thus, association with P bodies or cellular HMM complexes could not predict the potency of APOBEC3 anti-LINE-1 activities. The catalytic domain of APOBEC3 proteins may be important for proper folding and target factors such as RNA or protein interaction in addition to cytidine deamination.