
Role of the Endocytic Pathway in the Counteraction of BST-2 by Human Lentiviral Pathogens
Author(s) -
David Lau,
Wilson Kwan,
John Guatelli
Publication year - 2011
Publication title -
journal of virology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.617
H-Index - 292
eISSN - 1070-6321
pISSN - 0022-538X
DOI - 10.1128/jvi.02633-10
Subject(s) - biology , endocytic cycle , microbiology and biotechnology , virology , computational biology , endocytosis , genetics , cell
The interferon-inducible transmembrane protein BST-2 (CD317, tetherin) restricts the release of several enveloped viruses from infected cells. BST-2 is broadly active against retroviruses, including HIV-1 and HIV-2. To counteract this host defense, HIV-1 uses the accessory protein Vpu, whereas HIV-2 uses its envelope glycoprotein (Env). In both cases, viral antagonism is associated with decreased expression of BST-2 at the cell surface. Here, we provide evidence supporting a role for the clathrin-mediated endocytic pathway in the downregulation of BST-2 from the cell surface and the counteraction of restricted virion release. A catalytically inactive, dominant negative version of the vesicle “pinch-ase” dynamin 2 (dyn2K44A) inhibited the downregulation of BST-2 by Vpu, and it inhibited the release of wild-type (Vpu-expressing) HIV-1 virions. Similarly, dyn2K44A inhibited the downregulation of BST-2 by HIV-2 Env, and it inhibited the release ofvpu -negative HIV-1 virions when HIV-2 Env was provided intrans . dyn2K44A inhibited Env more robustly than Vpu, suggesting that dynamin 2, while a cofactor for both Env and Vpu, might support just one of several pathways though which Vpu counteracts BST-2. In support of a role for clathrin in these effects, the C-terminal domain of the clathrin assembly protein AP180 also inhibited the downregulation of BST-2 by either Vpu or HIV-2 Env. Consistent with modulation of the postendocytic itinerary of BST-2, Vpu enhanced the accumulation of cell surface-derived BST-2 in transferrin-containing endosomes. Vpu also inhibited the transport of BST-2 from a brefeldin A-insensitive compartment to the cell surface, consistent with a block to endosomal recycling. We propose that HIV-1 Vpu, and probably HIV-2 Env, traps BST-2 in an endosomal compartment following endocytosis, reducing its level at the cell surface to counteract restricted viral release.