z-logo
open-access-imgOpen Access
The E1^E4 Protein of Human Papillomavirus Interacts with the Serine-Arginine-Specific Protein Kinase SRPK1
Author(s) -
Ian M. Bell,
Ashley Martin,
Sally Roberts
Publication year - 2007
Publication title -
journal of virology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.617
H-Index - 292
eISSN - 1070-6321
pISSN - 0022-538X
DOI - 10.1128/jvi.02609-06
Subject(s) - biology , rna binding protein , microbiology and biotechnology , biochemistry , rna , gene
Human papillomavirus (HPV) infections of the squamous epithelium are associated with high-level expression of the E1^E4 protein during the productive phase of infection. However, the precise mechanisms of how E1^E4 contributes to the replication cycle of the virus are poorly understood. Here, we show that the serine-arginine (SR)-specific protein kinase SRPK1 is a novel binding partner of HPV type 1 (HPV1) E1^E4. We map critical residues within an arginine-rich domain of HPV1 E1^E4, and in a region known to facilitate E1^E4 oligomerization, that are requisite for SRPK1 binding. In vitro kinase assays show that SRPK1 binding is associated with phosphorylation of an HPV1 E1^E4 polypeptide and modulates autophosphorylation of the kinase. We show that SRPK1 is sequestered into E4 inclusion bodies in terminally differentiated cells within HPV1 warts and that colocalization between E1^E4 and SRPK1 is not dependent on additional HPV1 factors. Moreover, we also identify SRPK1 binding of E1^E4 proteins of HPV16 and HPV18. Our findings indicate that SRPK1 binding is a conserved function of E1^E4 proteins of diverse virus types. SRPK1 influences important biochemical processes within the cell, including nuclear organization and RNA metabolism. While phosphorylation of HPV1 E4 by SRPK1 may directly influence HPV1 E4 function during the infectious cycle, the modulation and sequestration of SRPK1 by E1^E4 may affect the ability of SRPK1 to phosphorylate its cellular targets, thereby facilitating the productive phase of the HPV replication cycle.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here