
Replication and Propagation of Attenuated Vesicular Stomatitis Virus Vectors In Vivo: Vector Spread Correlates with Induction of Immune Responses and Persistence of Genomic RNA
Author(s) -
Ian D. Simon,
Jean Publicover,
John K. Rose
Publication year - 2006
Publication title -
journal of virology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.617
H-Index - 292
eISSN - 1070-6321
pISSN - 0022-538X
DOI - 10.1128/jvi.02525-06
Subject(s) - vesicular stomatitis virus , biology , virology , immune system , rhabdoviridae , vesicular stomatitis indiana virus , vector (molecular biology) , viral replication , vesicular stomatitis , rna , virus , immunology , gene , genetics , recombinant dna
Live-attenuated vesicular stomatitis virus (VSV) vectors expressing foreign antigens induce potent immune responses and protect against viral diseases in animal models. Highly attenuated (VSV-CT1) or single-cycle VSV (VSVΔG) vectors induce immune responses lower than those generated by attenuated wild-type VSV vectors when given intranasally. We show here that reduced spread of the more highly attenuated or single-cycle vectors to other organs, including lymph nodes, correlates with the reduction in the immune responses. A reverse transcription, real-time PCR assay for VSV genomic RNA (gRNA) sequences showed long-term persistence of gRNA from replicating vectors in lymph nodes, long after viral clearance. Such persistence may be important for induction of potent immune responses by VSV vectors.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom