
Inhibition of Transcription of the Beta Interferon Gene by the Human Herpesvirus 6 Immediate-Early 1 Protein
Author(s) -
Joanna Jaworska,
Annie Gravel,
Karin Fink,
Nathalie Grandvaux,
Louis Flamand
Publication year - 2007
Publication title -
journal of virology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.617
H-Index - 292
eISSN - 1070-6321
pISSN - 0022-538X
DOI - 10.1128/jvi.02443-06
Subject(s) - biology , irf3 , sendai virus , interferon , microbiology and biotechnology , gene expression , interferon regulatory factors , transfection , gene , regulation of gene expression , ectopic expression , interferon type i , virology , transcription factor , virus , genetics
Human herpesviruses (HHV) are stealth pathogens possessing several decoy or immune system evasion mechanisms favoring their persistence within the infected host. Of these viruses, HHV-6 is among the most successful human parasites, establishing lifelong infections in nearly 100% of individuals around the world. To better understand this host-pathogen relationship, we determined whether HHV-6 could interfere with the development of the innate antiviral response by affecting interferon (IFN) biosynthesis. Using inducible cell lines and transient transfection assays, we have identified the immediate-early 1 (IE1) protein as a potent inhibitor of IFN-β gene expression. IE1 proteins from both HHV-6 variants were capable of suppressing IFN-β gene induction. IE1 prevents IFN-β gene expression triggered by Sendai virus infection, double-stranded RNA (dsRNA) and dsDNA transfection, or the ectopic expression of IFN-β gene activators such as retinoic inducible gene I protein, mitochondrial antiviral signaling protein, TBK-1, IκB kinase ε (IKKε), and IFN regulatory factor 3 (IRF3). While the stability of IFN-β mRNA is not affected, IE1-expressing cells have reduced levels of dimerized IRF3 and nucleus-translocated IRF3 in response to activation by TBK-1 or IKKε. Using nuclear extracts and gel shift experiments, we could demonstrate that in the presence of IE1, IRF3 does not bind efficiently to the IFN-β promoter sequence. Overall, these results indicate that the IE1 protein of HHV-6, one of the first viral proteins synthesized upon viral entry, is a potent suppressor of IFN-β gene induction and likely contributes to favor the establishment of and successful infection of cells with this virus.