Open Access
Relative Fitness and Replication Capacity of a Multinucleoside Analogue-Resistant Clinical Human Immunodeficiency Virus Type 1 Isolate with a Deletion of Codon 69 in the Reverse Transcriptase Coding Region
Author(s) -
Cristina Villena,
Julia G. Prado,
María C. Puertas,
Miguel Ángel Martı́nez,
Bonaventura Clotet,
Lı́dia Ruiz,
Neil Parkin,
Luis MenéndezArias,
Javier MartinezPicado
Publication year - 2007
Publication title -
journal of virology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.617
H-Index - 292
eISSN - 1070-6321
pISSN - 0022-538X
DOI - 10.1128/jvi.02135-06
Subject(s) - biology , reverse transcriptase , rnase h , virology , resistance mutation , coding region , viral replication , virus , mutation , recombinant dna , genetics , microbiology and biotechnology , rna , gene
Deletions, insertions, and amino acid substitutions in the β3-β4 hairpin loop-coding region of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) have been associated with resistance to nucleoside RT inhibitors when appearing in combination with other mutations in the RT-coding region. In this work, we have measured the in vivo fitness of HIV-1 variants containing a deletion of 3 nucleotides affecting codon 69 (Δ69) of the viral RT as well as the replication capacity (RC) ex vivo of a series of recombinant HIV-1 variants carrying an RT bearing the Δ69 deletion or the T69A mutation in a multidrug-resistant (MDR) sequence background, including the Q151M complex and substitutions M184V, K103N, Y181C, and G190A. Patient-derived viral clones having RTs with Δ69 together with S163I showed increased RCs under drug pressure. These data were consistent with the viral population dynamics observed in a long-term-treated HIV-1-infected patient. In the absence of drugs, viral clones containing T69A replicated more efficiently than those having Δ69, but only when patient-derived sequences corresponding to RT residues 248 to 527 were present. These effects could be attributed to a functional interaction between the C-terminal domain of the p66 subunit (RNase H domain) and the DNA polymerase domain of the RT. Finally, recombinant HIV-1 clones bearing RTs with MDR-associated mutations, including deletions at codon 69, showed increased susceptibilities to protease inhibitors in phenotypic assays. These effects correlated with impaired Gag cleavage and could be attributed to delayed maturation and decreased production of active protease in those variants.