z-logo
open-access-imgOpen Access
Activation of the N-Terminally Truncated Form of the Stk Receptor Tyrosine Kinase Sf-Stk by Friend Virus-Encoded gp55 Is Mediated by Cysteine Residues in the Ecotropic Domain of gp55 and the Extracellular Domain of Sf-Stk
Author(s) -
Shujiao He,
Shuang Ni,
Shailaja Hegde,
Xin Wang,
Daniel R. Sharda,
Avery August,
Robert F. Paulson,
Pamela A. Hankey
Publication year - 2010
Publication title -
journal of virology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.617
H-Index - 292
eISSN - 1070-6321
pISSN - 0022-538X
DOI - 10.1128/jvi.02090-09
Subject(s) - grb2 , biology , phosphorylation , autophosphorylation , receptor tyrosine kinase , friend virus , tyrosine , microbiology and biotechnology , cysteine , signal transduction , kinase , extracellular , biochemistry , virus , genetics , protein kinase a , enzyme
Friend virus induces an erythroleukemia in susceptible mice that is initiated by the interaction of the Friend virus-encoded glycoprotein gp55 with the erythropoietin (Epo) receptor and the product of the hostFv2 gene, a naturally occurring truncated form of the Stk receptor tyrosine kinase (Sf-Stk). We have previously demonstrated that the activation of Sf-Stk, recruitment of a Grb2/Gab2/Stat3 signaling complex, and induction of Pu.1 expression by Stat3 are required for the development of the early stage of Friend disease bothin vitro andin vivo . Here we demonstrate that the interaction of gp55 with Sf-Stk is dependent on cysteine residues in the ecotropic domain of gp55 and the extracellular domain of Sf-Stk. Point mutation of these cysteine residues or deletion of these domains inhibits the ability of gp55 to interact with Sf-Stk, resulting in the inability of these proteins to promote the Epo-independent growth of erythroid progenitor cells. We also demonstrate that the interaction of gp55 with Sf-Stk does not promote dimerization of Sf-Stk but results in enhanced phosphorylation of Sf-Stk and the relocalization of Sf-Stk from the cytosol to the plasma membrane. Finally, we demonstrate that a constitutively active form of Sf-Stk (Sf-StkM330T), as well as its human counterpart, Sf-Ron, promotes Epo-independent colony formation in the absence of gp55 and that this response is also dependent on the cysteines in the extracellular domains of Sf-StkM330T and Sf-Ron. These data suggest that the cysteines in the extracellular domains of Sf-Stk and Sf-Ron may also mediate the interaction of these truncated receptors with other cellular factors that regulate their ability to promote cytokine-independent growth.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here