
Evidence of Early B-Cell Dysregulation in Simian Immunodeficiency Virus Infection: Rapid Depletion of Naïve and Memory B-Cell Subsets with Delayed Reconstitution of the Naïve B-Cell Population
Author(s) -
David Kuhrt,
Seth A. Faith,
Amanda Leone,
Mukta Rohankedkar,
Donald L. Sodora,
Louis J. Picker,
Kelly Stefano Cole
Publication year - 2010
Publication title -
journal of virology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.617
H-Index - 292
eISSN - 1070-6321
pISSN - 0022-538X
DOI - 10.1128/jvi.01966-09
Subject(s) - simian immunodeficiency virus , biology , memory b cell , b cell , population , immunology , virology , virus , antibody , immune system , t cell , cell , medicine , genetics , environmental health
Despite eliciting a robust antibody response in humans, several studies in human immunodeficiency virus (HIV)-infected patients have demonstrated the presence of B-cell deficiencies during the chronic stage of infection. While several explanations for the HIV-induced B-cell deficit have been proposed, a clear mechanistic understanding of this loss of B-cell functionality is not known. This study utilizes simian immunodeficiency virus (SIV) infection of rhesus macaques to assess B-cell population dynamics beginning at the acute phase and continuing through the chronic phase of infection. Flow cytometric assessment demonstrated a significant early depletion of both naïve and memory B-cell subsets in the peripheral blood, with differential kinetics for recovery of these populations. Furthermore, the altered numbers of naïve and memory B-cell subsets in these animals corresponded with increased B-cell activation and altered proliferation profiles during the acute phase of infection. Finally, all animals produced high titers of antibody, demonstrating that the measurement of virus-specific antibody responses was not an accurate reflection of alterations in the B-cell compartment. These data indicate that dynamic B-cell population changes in SIV-infected macaques arise very early after infection at the precise time when an effective adaptive immune response is needed.