z-logo
open-access-imgOpen Access
Evidence of Early B-Cell Dysregulation in Simian Immunodeficiency Virus Infection: Rapid Depletion of Naïve and Memory B-Cell Subsets with Delayed Reconstitution of the Naïve B-Cell Population
Author(s) -
David Kuhrt,
Seth A. Faith,
Amanda Leone,
Mukta Rohankedkar,
Donald L. Sodora,
Louis J. Picker,
Kelly Stefano Cole
Publication year - 2010
Publication title -
journal of virology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.617
H-Index - 292
eISSN - 1070-6321
pISSN - 0022-538X
DOI - 10.1128/jvi.01966-09
Subject(s) - simian immunodeficiency virus , biology , memory b cell , b cell , population , immunology , virology , virus , antibody , immune system , t cell , cell , medicine , genetics , environmental health
Despite eliciting a robust antibody response in humans, several studies in human immunodeficiency virus (HIV)-infected patients have demonstrated the presence of B-cell deficiencies during the chronic stage of infection. While several explanations for the HIV-induced B-cell deficit have been proposed, a clear mechanistic understanding of this loss of B-cell functionality is not known. This study utilizes simian immunodeficiency virus (SIV) infection of rhesus macaques to assess B-cell population dynamics beginning at the acute phase and continuing through the chronic phase of infection. Flow cytometric assessment demonstrated a significant early depletion of both naïve and memory B-cell subsets in the peripheral blood, with differential kinetics for recovery of these populations. Furthermore, the altered numbers of naïve and memory B-cell subsets in these animals corresponded with increased B-cell activation and altered proliferation profiles during the acute phase of infection. Finally, all animals produced high titers of antibody, demonstrating that the measurement of virus-specific antibody responses was not an accurate reflection of alterations in the B-cell compartment. These data indicate that dynamic B-cell population changes in SIV-infected macaques arise very early after infection at the precise time when an effective adaptive immune response is needed.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here