
Hepatitis B Virus X Protein Enhances Cisplatin-Induced Hepatotoxicity via a Mechanism Involving Degradation of Mcl-1
Author(s) -
Liang Hu,
Lei Chen,
Li Liang,
Hanyong Sun,
Guosheng Yang,
Yan–Xin Chang,
QianQian Tu,
Mengchao Wu,
HongYang Wang
Publication year - 2011
Publication title -
journal of virology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.617
H-Index - 292
eISSN - 1070-6321
pISSN - 0022-538X
DOI - 10.1128/jvi.01841-10
Subject(s) - hbx , cisplatin , biology , apoptosis , cancer research , programmed cell death , downregulation and upregulation , ectopic expression , hepatitis b virus , cell culture , virus , immunology , biochemistry , genetics , chemotherapy , gene
Hepatitis B virus X protein (HBx) is implicated in the pathogenesis of hepatitis B virus (HBV)-associated liver diseases. However, whether HBx has the ability to disturb the susceptibility of hepatocytes to common chemotherapeutic agents remains incompletely understood. Here we demonstrate that HBx enhances cisplatin-induced hepatotoxicity by a mechanism involving degradation of Mcl-1, an antiapoptotic member of the Bcl-2 family. Ectopic expression of HBx sensitized hepatocytes to cisplatin-induced apoptosis, which was accompanied by a marked downregulation of Mcl-1 but not of Bcl-2 or Bcl-xL. Overexpression of Mcl-1 prevented HBx-induced proapoptotic and proinflammatory effects during cisplatin treatment bothin vitro andin vivo . HBx-induced dysregulation of Mcl-1 resulted mainly from posttranslational degradation rather than transcription repression. Moreover, a caspase-3 inhibitor effectively abrogated HBx-enhanced Mcl-1 degradation and cell death. Importantly, antioxidants blocked activation of caspase-3 and acceleration of Mcl-1 loss, as well as cell death, in HBx-expressing hepatocytes upon cisplatin exposurein vitro andin vivo . Collectively, these data implicate oxidative stress-dependent caspase-3-mediated degradation of Mcl-1 as a mechanism contributing to HBx-mediated sensitization of cisplatin-induced hepatotoxicity. A combination of cisplatin and antioxidants might provide more advantage than cisplatin alone in the treatment of cancer patients with chronic HBV infection.