
The IFITM Proteins Inhibit HIV-1 Infection
Author(s) -
Jennifer Lu,
Qinghua Pan,
Rong Liang,
ShanLu Liu,
Chen Liang
Publication year - 2011
Publication title -
journal of virology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.617
H-Index - 292
eISSN - 1070-6321
pISSN - 0022-538X
DOI - 10.1128/jvi.01531-10
Subject(s) - biology , interferon , innate immune system , virology , transmembrane protein , virus , antiviral protein , mutagenesis , viral replication , small hairpin rna , gene , immune system , rna , genetics , mutation , receptor
Type I interferon protects cells from virus infection through the induction of a group of genes collectively named interferon-stimulated genes (ISGs). In this study, we utilized short hairpin RNA (shRNA) to deplete ISGs in SupT1 cells in order to identify ISGs that suppress the production of human immunodeficiency virus type 1 (HIV-1). Among the ISG candidates thus identified were interferon-induced transmembrane (IFITM) proteins, including IFITM1, IFITM2, and IFITM3, that potently inhibit HIV-1 replication at least partially through interfering with virus entry. Further mutagenesis analysis shows that the intracellular region, rather than the N- and C-terminal extracellular domains, is essential for the antiviral activity of IFITM1. Altogether, these data suggest that the IFITM proteins serve as important components of the innate immune system to restrict HIV-1 infection.