
Examination of a Fusogenic Hexameric Core from Human Metapneumovirus and Identification of a Potent Synthetic Peptide Inhibitor from the Heptad Repeat 1 Region
Author(s) -
Scott A. Miller,
Sharon J. Tollefson,
James E. Crowe,
John V. Williams,
David W. Wright
Publication year - 2007
Publication title -
journal of virology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.617
H-Index - 292
eISSN - 1070-6321
pISSN - 0022-538X
DOI - 10.1128/jvi.01243-06
Subject(s) - heptad repeat , biology , human metapneumovirus , peptide , virology , metapneumovirus , identification (biology) , peptide sequence , core (optical fiber) , genetics , biochemistry , gene , respiratory tract infections , respiratory system , anatomy , botany , materials science , composite material
Paramyxoviruses are a leading cause of childhood illness worldwide. A recently discovered paramyxovirus, human metapneumovirus (hMPV), has been studied by our group in order to determine the structural relevance of its fusion (F) protein to other well-characterized viruses utilizing type I integral membrane proteins as fusion aids. Sequence analysis and homology models suggested the presence of requisite heptad repeat (HR) regions. Synthetic peptides from HR regions 1 and 2 (HR-1 and -2, respectively) were induced to form a thermostable (melting temperature, ∼90°C) helical structure consistent in mass with a hexameric coiled coil. Inhibitory studies of hMPV HR-1 and -2 indicated that the synthetic HR-1 peptide was a significant fusion inhibitor with a 50% inhibitory concentration and a 50% effective concentration of ∼50 nM. Many viral fusion proteins are type I integral membrane proteins utilizing the formation of a hexameric coiled coil of HR peptides as a major driving force for fusion. Our studies provide evidence that hMPV also uses a coiled-coil structure as a major player in the fusion process. Additionally, viral HR-1 peptide sequences may need further investigation as potent fusion inhibitors.