z-logo
open-access-imgOpen Access
Bovine Foamy Virus Transactivator BTas Interacts with Cellular RelB To Enhance Viral Transcription
Author(s) -
Jian Wang,
Juan Tan,
Hongyan Guo,
Qicheng Zhang,
Rui Jia,
Xuan Xu,
Yi Geng,
Wentao Qiao
Publication year - 2010
Publication title -
journal of virology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.617
H-Index - 292
eISSN - 1070-6321
pISSN - 0022-538X
DOI - 10.1128/jvi.01036-10
Subject(s) - relb , transactivation , biology , transcription factor , transcription (linguistics) , gene knockdown , microbiology and biotechnology , nfkb1 , cell culture , genetics , gene , linguistics , philosophy
Viruses are obligate intracellular parasites that depend on cellular machinery for their efficient transcription and replication. In a previous study we reported that bovine foamy virus (BFV) is able to activate the nuclear factor κB (NF-κB) pathway through the action of its transactivator BTas to enhance viral transcription. However, the mechanism used by NF-κB to enhance BFV transcription remains elusive. To address this question, we employed a yeast two-hybrid assay to screen for BTas-interacting proteins. We found that RelB, a member of NF-κB protein family, interacts with BTas. We confirmed the putative RelB-BTas interactionin vitro andin vivo and identified the protein regions responsible for the RelB-BTas interaction. Using a luciferase reporter assay, we next showed that RelB enhances BFV transcription (BTas-induced long terminal repeat [LTR] transactivation) and that this process requires both the localization of the RelB-BTas interaction in the nucleus and the Rel homology domain of RelB. The knockdown of the cellular endogenous RelB protein using small interfering RNA (siRNA) significantly attenuated BTas-induced LTR transcription. The results of chromatin immunoprecipitation (ChIP) analysis showed that endogenous RelB binds to the viral LTR in BFV-infected cells. Together, these results suggest that BFV engages the RelB protein as a cotransactivator of BTas to enhance viral transcription. In addition, our findings indicate that BFV infection upregulates cellular RelB expression through BTas-induced NF-κB activation. Thus, this study demonstrates the existence of a positive-feedback circuit in which BFV utilizes the host's NF-κB pathway through the RelB protein for efficient viral transcription.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here