z-logo
open-access-imgOpen Access
N-Terminal Mutants of Herpes Simplex Virus Type 2 gH Are Transported without gL but Require gL for Function
Author(s) -
Tina M. Cairns,
Lisa S. Friedman,
Huan Lou,
J. Charles Whitbeck,
Marie S. Shaner,
Gary H. Cohen,
Roselyn J. Eisenberg
Publication year - 2007
Publication title -
journal of virology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.617
H-Index - 292
eISSN - 1070-6321
pISSN - 0022-538X
DOI - 10.1128/jvi.00097-07
Subject(s) - biology , mutant , signal peptide , herpes simplex virus , herpesvirus glycoprotein b , c terminus , glycoprotein , wild type , microbiology and biotechnology , peptide sequence , virus , biochemistry , amino acid , gene , viral entry , genetics , viral replication
Glycoprotein H (gH) is conserved among all herpesviruses and is essential for virus entry and cell fusion along with gL, gB, and, in most alphaherpesviruses, gD. Within the gH/gL heterodimer, it is thought that gH accounts for the fusion function and gL acts as a chaperone for the folding and transport of gH. Here, we found that the N terminus of gH2 contains important elements involved in both its folding and its transport. Our conclusions are based on the phenotypes of a series of gH deletion mutants in which the signal sequence (residues 1 to 18) was retained and N-terminal residues were removed up to the number indicated. The first mutant, gH2Δ29 (deletion of residues 19 to 28), like wild-type (WT) gH, required gL for both transport and function. To our surprise, two other mutants (gH2Δ64 and gH2Δ72) were transported to the cell surface independent of gL but were nonfunctional, even when complexed with gL. Importantly, a fourth mutant (gH2Δ48) was transported independent of gL but was functional only when complexed with gL. Using a panel of monoclonal antibodies against gH2, we found that when gH2Δ48 was expressed alone, its antigenic structure differed from that of gH2Δ48/gL or gH2-WT/gL. Mutation of gH2 residue R39, Y41, W42, or D44 allowed gL-independent transport of gH. Our results also show that gL is not merely required for gH transport but is also necessary for the folding and function of the complex. Since gH2Δ64/gL and gH2Δ72/gL were nonfunctional, we hypothesized that residues critical for gH/gL function lie within this deleted region. Additional mutagenesis identified L66 and L72 as important for function. Together, our results highlight several key gH residues: R39, Y41, W42, and D44 for gH transport and L66 and L72 for gH/gL structure and function.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here