z-logo
open-access-imgOpen Access
Temperature-Mediated Heteroduplex Analysis for Detection of pncA Mutations Associated with Pyrazinamide Resistance and Differentiation between Mycobacterium tuberculosis and Mycobacterium bovis by Denaturing High- Performance Liquid Chromatography
Author(s) -
Mohamed Am,
Dhundy Bastola,
Glenn P. Morlock,
Robert C. Cooksey,
Steven H. Hinrichs
Publication year - 2004
Publication title -
journal of clinical microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.349
H-Index - 255
eISSN - 1070-633X
pISSN - 0095-1137
DOI - 10.1128/jcm.42.3.1016-1023.2004
Subject(s) - mycobacterium tuberculosis , tuberculosis , pyrazinamide , mycobacterium bovis , microbiology and biotechnology , biology , mycobacterium tuberculosis complex , drug resistance , mutant , virology , genetics , medicine , gene , pathology
The goal of this study was to apply temperature-mediated heteroduplex analysis using denaturing high-performance liquid chromatography to identify pyrazinamide (PZA) resistance in Mycobacterium tuberculosis isolates and simultaneously differentiate between M. tuberculosis and Mycobacterium bovis. Features that contributed to an optimal assay included the use of two different reference probes for the pncA gene targets from wild-type M. tuberculosis and wild-type M. bovis, optimization of the column temperature, increasing the starting concentration of the elution buffer, and reducing the rate of elution buffer increase (slope). A total of 69 strains were studied, including 48 wild-type M. tuberculosis strains (13 were PZA-resistant strains) and 21 M. bovis strains (8 were BCG strains). In all isolates tested, wild-type M. tuberculosis generated a single-peak pattern when mixed with the M. tuberculosis probe and a double-peak pattern with the M. bovis probe. In contrast, all M. bovis isolates generated a double-peak pattern when mixed with the M. tuberculosis probe and a single-peak pattern with the M. bovis probe. PZA-resistant mutant M. tuberculosis isolates generated characteristic patterns that were easily distinguishable from both wild-type M. tuberculosis and M. bovis isolates. Chromatographic patterns generated by the two reference probes allowed the rapid detection of PZA resistance with the simultaneous ability to distinguish between M. tuberculosis and M. bovis. This approach may allow the detection of drug resistance-associated mutations, with potential application to clinical and epidemiological aspects of tuberculosis control.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here