z-logo
open-access-imgOpen Access
Transcription Regulation of ezrA and Its Effect on Cell Division of Bacillus subtilis
Author(s) -
KueiMin Chung,
Hsin-Hsien Hsu,
Serengulam V. Govindan,
BanYang Chang
Publication year - 2004
Publication title -
journal of bacteriology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.652
H-Index - 246
eISSN - 1067-8832
pISSN - 0021-9193
DOI - 10.1128/jb.186.17.5926-5932.2004
Subject(s) - bacillus subtilis , biology , transcription (linguistics) , cell division , microbiology and biotechnology , division (mathematics) , transcription factor , genetics , cell , computational biology , bacteria , gene , linguistics , philosophy , arithmetic , mathematics
The EzrA protein of Bacillus subtilis is a negative regulator for FtsZ (Z)-ring formation. It is able to modulate the frequency and position of Z-ring formation during cell division. The loss of this protein results in cells with multiple Z rings located at polar as well as medial sites; it also lowers the critical concentration of FtsZ required for ring formation (P. A. Levin, I. G. Kurster, and A. D. Grossman, Proc. Natl. Acad. Sci. USA 96:9642-9647, 1999). We have studied the regulation of ezrA expression during the growth of B. subtilis and its effects on the intracellular level of EzrA as well as the cell length of B. subtilis. With the aid of promoter probing, primer extension, in vitro transcription, and Western blotting analyses, two overlapping sigmaA-type promoters, P1 and P2, located about 100 bp upstream of the initiation codon of ezrA, have been identified. P1, supposed to be an extended -10 promoter, was responsible for most of the ezrA expression during the growth of B. subtilis. Disruption of this promoter reduced the intracellular level of EzrA very significantly compared with disruption of P2. Moreover, deletion of both promoters completely abolished EzrA in B. subtilis. More importantly, the cell length and percentage of filamentous cells of B. subtilis were significantly increased by disruption of the promoter(s). Thus, EzrA is required for efficient cell division during the growth of B. subtilis, despite serving as a negative regulator for Z-ring formation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here