z-logo
open-access-imgOpen Access
Purification and Characterization of the AAA+ Domain ofSinorhizobium melilotiDctD, a σ54-Dependent Transcriptional Activator
Author(s) -
Hao Xu,
Baohua Gu,
B. Tracy Nixon,
Timothy R. Hoover
Publication year - 2004
Publication title -
journal of bacteriology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.652
H-Index - 246
eISSN - 1067-8832
pISSN - 0021-9193
DOI - 10.1128/jb.186.11.3499-3507.2004
Subject(s) - biology , biochemistry , transcription (linguistics) , atp hydrolysis , microbiology and biotechnology , atpase , enzyme , philosophy , linguistics
Activators of sigma54-RNA polymerase holoenzyme couple ATP hydrolysis to formation of an open complex between the promoter and RNA polymerase. These activators are modular, consisting of an N-terminal regulatory domain, a C-terminal DNA-binding domain, and a central activation domain belonging to the AAA+ superfamily of ATPases. The AAA+ domain of Sinorhizobium meliloti C4-dicarboxylic acid transport protein D (DctD) is sufficient to activate transcription. Deletion analysis of the 3' end of dctD identified the minimal functional C-terminal boundary of the AAA+ domain of DctD as being located between Gly-381 and Ala-384. Histidine-tagged versions of the DctD AAA+ domain were purified and characterized. The DctD AAA+ domain was significantly more soluble than DctD(Delta(1-142)), a truncated DctD protein consisting of the AAA+ and DNA-binding domains. In addition, the DctD AAA+ domain was more homogeneous than DctD(Delta(1-142)) when analyzed by native gel electrophoresis, migrating predominantly as a single high-molecular-weight species, while DctD(Delta(1-142)) displayed multiple species. The DctD AAA+ domain, but not DctD(Delta(1-142)), formed a stable complex with sigma54 in the presence of the ATP transition state analogue ADP-aluminum fluoride. The DctD AAA+ domain activated transcription in vitro, but many of the transcripts appeared to terminate prematurely, suggesting that the DctD AAA+ domain interfered with transcription elongation. Thus, the DNA-binding domain of DctD appears to have roles in controlling the oligomerization of the AAA+ domain and modulating interactions with sigma54 in addition to its role in recognition of upstream activation sequences.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here