z-logo
open-access-imgOpen Access
Structure of Haloacetate-Catabolic IncP-1β Plasmid pUO1 and Genetic Mobility of Its Residing Haloacetate-Catabolic Transposon
Author(s) -
Masahiro Sota,
Haruhiko Kawasaki,
Masashi Tsuda
Publication year - 2003
Publication title -
journal of bacteriology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.652
H-Index - 246
eISSN - 1067-8832
pISSN - 0021-9193
DOI - 10.1128/jb.185.22.6741-6745.2003
Subject(s) - transposable element , biology , plasmid , transposition (logic) , genetics , insertion sequence , transposase , tn3 transposon , inverted repeat , gene , mobile genetic elements , microbiology and biotechnology , genome , linguistics , philosophy
The self-transmissible plasmid pUO1 from Delftia acidovorans strain B carries two haloacetate-catabolic transposons, TnHad1 and TnHad2, and the mer genes for resistance to mercury. The complete 67,066-bp sequence of pUO1 revealed that the mer genes were also carried by two Tn402/Tn5053-like transposons, Tn4671 and Tn4672, and that the pUO1 backbone regions shared 99% identity to those of the archetype IncP-1beta plasmid R751. Comparison of pUO1 with three other IncP-1beta plasmids illustrated the importance of transposon insertion in the diversity and evolution of this group of plasmids. Mutational analysis of the four outermost residues in the inverted repeats (IRs) of TnHad2, a Tn21-related transposon, revealed a crucial role of the second residue of its IRs in transposition.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here