z-logo
open-access-imgOpen Access
Transcription ofnhaA, the Main Na+/H+Antiporter ofEscherichia coli, Is Regulated by Na+and Growth Phase
Author(s) -
Nir Dover,
Etana Padan
Publication year - 2001
Publication title -
journal of bacteriology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.652
H-Index - 246
eISSN - 1067-8832
pISSN - 0021-9193
DOI - 10.1128/jb.183.2.644-653.2001
Subject(s) - antiporter , biology , transcription (linguistics) , microbiology and biotechnology , escherichia coli , rna polymerase , promoter , sigma factor , transcription factor , gene , gene expression , biochemistry , membrane , philosophy , linguistics
The transcription of nhaA, encoding the main Na(+)/H(+) antiporter of Escherichia coli, is induced by Na(+), regulated by NhaR, and affected by H-NS. In this work the roles of the two nhaA promoters (P1 and P2) were studied by analysis of transcription both in vivo and in vitro and promoter mutations. We found that P1 is an NhaR-dependent, Na(+)-induced, and H-NS-affected promoter both in the exponential and stationary phases. An in vitro transcription assay demonstrated that P1 is activated by sigma(70)-RNA polymerase and both NhaR and H-NS increase the specificity of P1. Remarkably, in marked contrast to P1, P2 exhibits very low activity during the exponential phase but is induced in the stationary phase to become the major promoter. Furthermore, P2 is activated by sigma(S) and is neither induced by Na(+) nor dependent on NhaR or affected by H-NS. Hence, this work establishes that nhaA has a dual mode of regulation, each involving a different promoter, and reveals that P2 and sigma(S) together are responsible for the survival of stationary-phase cells in the presence of high Na(+), alkaline pH, and the combination of high Na(+) and alkaline pH, the most stressful condition.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here