
Phenotypic characterization of a tungsten-tolerant mutant of Azotobacter vinelandii
Author(s) -
R. Premakumar,
Susanne Jacobitz,
S. C. Ricke,
Paul E. Bishop
Publication year - 1996
Publication title -
journal of bacteriology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.652
H-Index - 246
eISSN - 1067-8832
pISSN - 0021-9193
DOI - 10.1128/jb.178.3.691-696.1996
Subject(s) - azotobacter vinelandii , nitrogenase , biology , strain (injury) , mutant , structural gene , microbiology and biotechnology , biochemistry , gene , bacteria , genetics , nitrogen fixation , anatomy
A tungsten-tolerant mutant strain (CA6) of Azotobacter vinelandii first described in 1980 (P. E. Bishop, D. M. L. Jarlenski, and D. R. Hetherington, Proc. Natl. Acad. Sci. USA 77:7342-7346, 1980) has been further characterized. Results from growth experiments suggest that both nitrogenases 1 and 3 are utilized when CA6 grows in N-free medium containing Na2MoO4. Strain CA6.1.71, which lacks both nitrogenases 2 and 3, grew as well as strain CA in N-free medium containing Na2MoO4 after an initial lag. This indicates that nitrogenase 1 is fully functional in strain CA6. nifH-lacZ and anfH-lacZ transcriptional fusions were expressed in CA6 in the presence of Na2MoO4. Thus, in contrast to wild-type strain CA, transcription of the anfHDGK gene cluster in strain CA6 is not repressed by Mo. Expression of the vnfD-lacZ fusion was the same in both strains CA and CA6. In agreement with the results obtained with lac fusions, subunits of both nitrogenases 1 and 3 were found in protein extracts of CA6 cells grown in N-free medium containing Na2MoO4. However, CA6 cells, cultured in the presence of Na2WO4, accumulated nitrogenase 3 proteins without detectable amounts of nitrogenase 1 proteins. This indicates that expression of Mo-independent nitrogenase 3 is the basis for the tungsten tolerance phenotype of strain CA6. A measure of Mo accumulation as a function of time showed that accumulation by strain CA6 was slower than that for strain CA. When Mo accumulation was studied as a function of Na2MoO4 concentration, the two strains accumulated similar amounts of Mo in the concentration range of 0 to 1 microM Na2MoO4 during a 2-h period. Within the range of 1 to 5 microM Na2MoO4, Mo accumulation by strain CA increased linearly with increasing concentration whereas no further increases were observed for strain CA6. These results are consistent with the possibility that the tungsten tolerance mutation carried by CA6 is in a Mo transport system.