z-logo
open-access-imgOpen Access
Purification, characterization, and genetic analysis of Mycobacterium tuberculosis urease, a potentially critical determinant of host-pathogen interaction
Author(s) -
Daniel L. Clemens,
BaiYu Lee,
Marcus A. Horwitz
Publication year - 1995
Publication title -
journal of bacteriology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.652
H-Index - 246
eISSN - 1067-8832
pISSN - 0021-9193
DOI - 10.1128/jb.177.19.5644-5652.1995
Subject(s) - urease , biology , mycobacterium tuberculosis , biochemistry , asparagine , amidase , enzyme , amidohydrolase , microbiology and biotechnology , bacteria , protein subunit , gene , tuberculosis , genetics , pathology , medicine
Mycobacterium tuberculosis urease (urea amidohydrolase [EC 3.5.1.5]) was purified and shown to contain three subunits: two small subunits, each approximately 11,000 Da, and a large subunit of 62,000 Da. The N-terminal sequences of the three subunits were homologous to those of the A, B, and C subunits, respectively, of other bacterial ureases. M. tuberculosis urease was specific for urea, with a Km of 0.3 mM, and did not hydrolyze thiourea, hydroxyurea, arginine, or asparagine. The enzyme was active over a broad pH range (optimal activity at pH 7.2) and was remarkably stable against heating to 60 degrees C and resistant to denaturation with urea. The enzyme was not inhibited by 1 mM EDTA but was inhibited by N-ethylmaleimide, hydroxyurea, acetohydroxamate, and phenylphosphorodiamidate. Urease activity was readily detectable in M. tuberculosis growing in nitrogen-rich broth, but expression increased 10-fold upon nitrogen deprivation, which is consistent with a role for the enzyme in nitrogen acquisition by the bacterium. The gene cluster encoding urease was shown to have organizational similarities to urease gene clusters of other bacteria. The nucleotide sequence of the M. tuberculosis urease gene cluster revealed open reading frames corresponding to the urease A, B, and C subunits, as well as to the urease accessory molecules F and G.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here