
Multicopy suppression of cold-sensitive sec mutations in Escherichia coli
Author(s) -
Paul N. Danese,
Coleen Murphy,
Thomas J. Silhavy
Publication year - 1995
Publication title -
journal of bacteriology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.652
H-Index - 246
eISSN - 1067-8832
pISSN - 0021-9193
DOI - 10.1128/jb.177.17.4969-4973.1995
Subject(s) - biology , operon , overproduction , plasmid , groes , escherichia coli , mutant , mutation , gal operon , groel , gene , l arabinose operon , microbiology and biotechnology , protein biosynthesis , genetics
Mutations in the secretory (sec) genes in Escherichia coli compromise protein translocation across the inner membrane and often confer conditional-lethal phenotypes. We have found that overproduction of the chaperonins GroES and GroEL from a multicopy plasmid suppresses a wide array of cold-sensitive sec mutations in E. coli. Suppression is accompanied by a stimulation of precursor protein translocation. This multicopy suppression does not bypass the Sec pathway because a deletion of secE is not suppressed under these conditions. Surprisingly, progressive deletion of the groE operon does not completely abolish the ability to suppress, indicating that the multicopy suppression of cold-sensitive sec mutations is not dependent on a functional groE operon. Indeed, overproduction of proteins unrelated to the process of protein export suppresses the secE501 cold-sensitive mutation, suggesting that protein overproduction, in and of itself, can confer mutations which compromise protein synthesis and the observation that low levels of protein synthesis inhibitors can suppress as well. In all cases, the mechanism of suppression is unrelated to the process of protein export. We suggest that the multicopy plasmids also suppress the sec mutations by compromising protein synthesis.