z-logo
open-access-imgOpen Access
Characterization of traX, the F plasmid locus required for acetylation of F-pilin subunits
Author(s) -
Kesmanee Maneewannakul,
Sumit Maneewannakul,
Karin IppenIhler
Publication year - 1995
Publication title -
journal of bacteriology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.652
H-Index - 246
eISSN - 1067-8832
pISSN - 0021-9193
DOI - 10.1128/jb.177.11.2957-2964.1995
Subject(s) - pilin , biology , open reading frame , plasmid , stop codon , genetics , microbiology and biotechnology , frameshift mutation , start codon , pilus , gene , peptide sequence , mutation , messenger rna , escherichia coli
Acetylation of F-pilin subunits has previously been shown to depend upon expression of the F plasmid transfer operon gene traX. To assess the requirement for pilin acetylation in conjugative transfer of F, we constructed traX::kan insertion mutations and crossed them onto the transmissible F derivative pOX38. Under standard conditions, the function of traX seemed to be dispensable. Although pilin synthesized by mutant plasmids pOX38-traX482 and pOX38-traX483 was not acetylated, F-pilus production and F-pilus-specific phage infection appeared to be normal and transfer occurred at wild-type frequency. Analysis of labeled products showed that TraX+ plasmids expressed two approximately 24- (TraX1) and 22-kDa (TraX2) polypeptides that localized in the cytoplasmic membranes of cells. No product that was similar in size to the product predicted from the traX open reading frame (27.5 kDa) was detected. Therefore, we used site-directed mutagenesis, stop codon linker insertions, and phoA fusion analysis to investigate traX expression. Both TraX1 and TraX2 appeared to be encoded by the traX open reading frame. Insertion of a stop codon linker into the traX C-terminal coding region led to synthesis of two correspondingly truncated products, and fusions to phoA indicated that only the traX reading frame was translated. Expression was also very dependent on the traX M1 start codon; when this was altered, no protein products were observed. However, pilin acetylation activity was still detectable, indicating that some other in-frame start codon(s) can also be used. All sequences that are essential for activity are contained between traX codons 29 and 225. Sequence analysis indicated that traX mRNA is capable of forming a variety of base-paired structures. We suggest that traX expression is translationally controlled and that F-pilin acetylation activity may be regulated by physiological conditions in cells.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here